BIOLOGICAL CRITERIA
Technical Guidance for Survey Design and Statistical Evaluation of Biosurvey Data

APPENDI X A. Basic Statistics and Statistical Concepts 35
Measures of Central TENAENCY......c.oeee e s e eeeeees 35
IMTBAIN ...ttt 35
IMBAIBN ...t 35
THMMEA IMBAN. ...ttt s e e nee e e et e e enee e e sneeeeneeeens 35
1Y/ oo L= SR 36
GEOMELIIC IMBAN...... ettt e et e e e e snte e e eneeeennes 36
MEaSUIrES Of DISPEISION ....coiuiiieiiee et ee et e et e e st e e saeeeeae e e sneeeeaneeeeneens 36
StANAArd DEVIGLTON ...ttt 36
ADSOIULE DEVIBLION.......eeeiiiieeee ettt e e smeeeenneeeens 36
INterquUartile RANGE ........coe e 36
RBNGE ...ttt e s e be e e e s e nee e e e aan 37
Resistance and RODUSINESS ..........ooiiiiie e 37
GraphiC ANBIYSES ...ttt ettt et et e et e e et e e ete e e sneeeeneeesnseeeaneeeennes 37
[ TS 00 7= 0 1SR 37
Stem and Leaf DIiSPIayS ......eeieerieeieeiee e 39
Box and Whisker PIOLS ........cooiiiiie e 40

BiVariate SCAEr PlOLS.......oiieeieeeeee ettt ettt e e e e e e e et e e e e e eeeeee e eas 41



APPENDIX A Basie Statisties and Statisticeal

Concepts

Certain specific features of a data set are charac-
terized by descriptive statistics. Of these mea-
sures, the center, or central tendency of a set of data, is
probably the most important. Among the candidate
statistics for central tendency are the mean, median,
mode, and geometric mean. Once the center of a data
set is described, the next important feature is the data
distribution: the spread, dispersion, or scale. Among
the candidate estimators of dispersion are range, stan-
dard deviation, and interquartile range. These two
characteristics of a data set, central tendency and dis-
persion, are the most common descriptive statistics.
Other characteristics, such as skewness and kurtosis,
are occasionally important. The examples that follow
illustrate the choice of descriptive statistics.

Measures of Central Tendency

Probably the single most useful way to summarize a
data set is to indicate the center of the sample. “Cen-
ter” suggests the vague notion of the middle of a clus-
ter of data points or perhaps the region of greatest
concentration. Since samples of data exhibit a variety
of distributions when plotted as bar graphs (histo-
grams), it is not possible to define the center unambig-
uously. As a result several statistical estimators can
serve as candidates for determining central tendency
or location, and each candidate has advantages and
disadvantages for the task at hand.

Mean

The arithmetic mean, or simply, the mean — the sum
of all data values divided by their number — is the
most frequently used central tendency estimator. It is
so commonly used that scientists often lose sight of
the true reason for calculating descriptive statistics.
In some cases, the mean is calculated as the central
tendency, though another central tendency statistic
would be better.

The arithmetic mean (x) is the sum of the obser-
vations (x,) divided by the number of observations (n):

XX (A1)
n

Each observation contributes its magnitude to
the sum of the observations and hence to the mean.
For symmetric distributions (like the normal
bell-shaped or Gaussian distribution), the mean cal-
culated from a sample of data {the sample mean) often

comes quite close to the center, or peak, of the
histogram for that sample. However, biological data
are often not symmetrically distributed. The ex-
tremely high or extremely low observations charac-
teristic of skewed (nonsymmetrical) data
distributions pull the mean in the direction of the
skew; a few extremely high observations can pull the
mean away from the bulk of the observations and to-
ward the few high data points. In those situations, a
more resistant estimator, such as the median or the
mode, may be preferred.

Median

The median is the value of the middle observation
when data are arranged in order of size — from lowest
to highest value. The median is therefore known as an
“order statistic” since it is based on an ordering or
ranking of observations. When the total number of ob-
servations is an even number, leading to two middle
values, the median is then the average of the two mid-
dle values.

The “order” of the median observation is
Median Observation = (n + 1)/2 (A.2)

The effect on the median of all but the mid-
dle-ranking observations is simply to hold a place in
the ranking so that outlying observations do not pull
the median toward the extremes. The median is resis-
tant to the influence of any particular observations;
therefore, it is a good statistic to use when the histo-
gram is skewed or unusually shaped.

Trimmed Mean

The trimmed mean is the mean value from a
subsample of the original sample. The subsample is
formed by symmetrically trimming a small percent-
age of the data points from either end of the ordered
observations. For example, a 10-percent trimmed
mean is calculated from the subsample remaining af-
ter the highest and lowest 10 percent of the observa-
tions are removed from the set. At the extreme, the
median is the trimmed mean with all but the middle
observation removed.

The trimmed mean is an efficient indicator of
central tendency if censoring has occurred or if a few
outlying observations are found in the data. Here,
censoring refers to data points reported as “below de-
tection limits.” If 15 percent of the data points are be-
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low detection limits, then a 15-percent trimmed
mean estimator (involving 15 percent trimming from
each end) should result in less bias than the arithme-
tic mean, the estimator based on all uncensored ob-
servations.

Mode

The mode is the value in the sample that is most fre-
quently observed; it can be used for discrete or cate-
gorical data. If no value is repeated more than once, as
is possible for biological data on a continuous scale,
the mode will not be a useful estimator of central ten-
dency. Alternatively, if a histogram is used to repre-
sent the data, then the mode is defined as the range of
values associated with the tallest bar on the histo-
gram. The mode is a good estimator for central ten-
dency because the most frequently observed value is
usually near the center of the distribution. The histo-
gram will indicate visually whether the mode actu-
ally does correspond with the center of the sample.

Geometric Mean

The geometric mean is a reasonable measure of cen-
tral tendency for a set of data that exhibit a lognormal
distribution. It is the antilog of the mean of
logarithmically transformed data. The lognormal data
distribution is skewed in the original units of mea-
surement, but normal (Gaussian) when the original
measurements are log-transformed. Several investi-
gators suggest that the lognormal distribution is a
good probability model for concentration data on en-
vironmental contaminants. Data sets described by the
lognormal distribution have a few high values that are
somewhat extreme from the bulk of the observations.

The geometric mean may be calculated in two
ways:

2 log(x, )J (A3)
n

Geometric Mean = anti log(

or:

Geometric Mean = [H X, ]IF (A.4)

Hxi:xl-xz-XS- X

Measures of Dispersion

If central tendency measures are not used to summa-
rize a data set, then measures of dispersion or spread
will be used instead. Dispersion in a data set refers to
the variability in the observations around the center
of the distribution. Good measures of dispersion will
be obtained from symmetric distributions. Asymme-
try, or skew, will affect the estimate of dispersion so

where

that it overestimates spread in the shorter tail of the
data distribution (while underestimating it in the lon-
ger tail). A transformation (e.g., logarithm) should be
considered in cases of asymmetry in order to create a
symmetric distribution. Statistics are then calculated
on the basis of the transformed metric.

Standard Deviation

The most commonly used statistic for dispersion is
the standard deviation. In fact, the standard devia-
tion, like the mean, is used so often that it is some-
times thought to be the equivalent of dispersion. It is,
however, a measure of variability that represents the
average distance of the data from the mean; and, like
the mean, it is strongly affected by extreme values.
Thus, the standard deviation for a distribution of data
with a long tail to the right is inflated by the values at
the extreme right. Investigators may prefer to create a
symmetric distribution before calculating the stan-
dard deviation.

For a sample, the sample variance (s?) is

52 21/____2(:_—1") (A.5)

and the sample standard deviation (s) is the square
root of the variance (\/s_2 ).

Absolute Deviation

The standard deviation is based on squared error;
squaring the deviation between a data point and the
sample mean increases the influence of the largest
and smallest observations on the estimate of devia-
tion. The absolute deviation can be calculated to re-
duce the influence of outliers on the dispersion
statistic. To arrive at the absolute deviation, the mean
(or median) is first estimated, and then the absolute
value of the difference between the mean or median
and each data point is calculated. The mean or me-
dian of these absolute deviations is then calculated as
the mean or median absolute deviation.

Interquartile Range

Since the standard deviation is unduly influenced by
extreme observations in both symmetric and asym-
metric distributions of data, a resistant alternative to
the standard deviation (as the median is to the mean)
is needed for situations in which the data are skewed
but transformation is undesirable. Fortunately a good
alternative exists — the interquartile range: the range
that includes the central 50 percent of all observa-
tions in the set. The interquartile range, like the me-
dian, is based on order statistics; thus, it is unaffected
by the magnitude of the extreme observations in ei-
ther tail. It is calculated as the difference between the
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observation at the 75™ percentile (upper quartile) and
the observation at the 25™ percentile (lower quartile):

Lower quartile rank order =
(1/2)(1 + median rank order)

Upper quartile rank order =
(1/2)(1 + n + lower quartile rank)

Interquartile range (I) =
lower quartile value — upper quartile value.

Range

Range is an easily determined and therefore fre-
quently cited measure of dispersion. The range is sim-
ply the maximum value minus the minimum value.
Since it is clearly affected by the magnitude of the ob-
servations at either extreme, the range should not be
relied on as the sole indicator of variability. Neverthe-
less, it is often informative to list the range along with
another dispersion statistic.

Resistance and Robustness

In a number of scientific fields, particularly those that
depend on observational (as opposed to experimen-
tal) data, errors of measurement and natural variabil-
ity are apt to result in empirical distributions
(histograms) with occasional outliers and shapes that
are more spread-out than the normal density func-
tion. This result, which is fairly common in water
quality studies, makes robustness and resistance im-
portant considerations when choosing statistics to
summarize data. In some situations, of course, the
outliers, rather than central tendency and dispersion,
will be the focus of the study.

A resistant estimator is one that is insensitive to
data points that are quite different from the rest of the
data (i.e., outliers). A robust estimator is one that per-
forms well (efficiently), even if an assumption con-
cerning the underlying probability model is wrong.
For central tendency, the mean is neither resistant nor
robust. The median is resistant to outliers but not ro-
bust since it is not as efficient as other options (i.e., it
is subject to large standard error). The trimmed mean
and so-called M-estimators (Hampel et al. 1986) are
both resistant and robust.

The most commonly used measure of disper-
sion, the standard deviation (or variance), is nonresis-
tant (highly sensitive to outliers) and not robust
because squaring the deviation emphasizes deviant
data points. The absolute deviation and the
interquartile range are more resistant but not highly
robust.

Resistance and robustness provide a measure of
insurance against features of the sample data that may
yield a summary estimate that is not representative of

the data set as a whole. A robust and resistant estima-
tor is not the best choice if, for example, there are no
outliers and the sample is an exact normal density
function. However, if outliers do occur, and samples
are not normal (or lognormal), then robust and resis-
tant estimators of center and dispersion are wise and
safe choices that will help investigators avoid faulty
inferences.

Graphic Analyses

It is good practice in statistical analysis to begin with
various displays of the raw data. That is, before de-
scriptive statistics are calculated from a data set, and
before analyses such as hypothesis testing and linear
(regression) model building occur, it is wise to look at
empirical graphs. The graphs recommended for this
task help the investigator identify the need to trans-
form the data before conducting the statistical analy-
sis.

Most procedures in statistics (e.g., regression
analysis, hypothesis testing) derive summary values
(e.g., mean, trimmed mean) from a data set. If the in-
ferences drawn from statistical procedures are to be
valid for the entire data set, then the summary statis-
tics must represent the entire set. Graphic displays
guide the choice of any necessary manipulations of
the data set and help assure the selection of appropri-
ate summary statistics. The examples presented here
underscore the importance of displaying the data at
the beginning of a statistical study.

Graphs can also be useful during the course of a
statistical study. For example, bivariate scatter plots
help scientists select independent variables for a re-
gression equation, and scientists will often wisely
choose to present the results of a statistical analysis in
graphic form. Conclusions are often most effectively
conveyed through graphs.

Histograms

Perhaps the most fundamental level of study is an
analysis of data on a single characteristic. Assume, for
example, that an aquatic biologist has a data set for
species richness from a stream study and now desires
to summarize this information. The biologist could
calculate the trimmed mean and median absolute de-
viation of the sample; alternatively, she could calcu-
late other statistics representing central tendency and
dispersion. To determine which of these statistics are
most useful, the biologist should first look at a plot of
the data. The histogram is often used to display data
representing a single characteristic (such as IBI).

For example, suppose that the index of biotic in-

tegrity in Table A.1 has just been determined for a par-
ticular stream from headwaters to mouth, and the
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Table A.1.—IBI data for a
particular stream. 9
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Figure A.1.—Histogram of IBI data for a particular stream.

biologist wants to picture the
biotic integrity of this stream. As a
first cut, the histogram in Figure A.1 is plotted. To
construct the histogram, the biologist must first di-
vide the range into equal intervals. In Figure A.1, the
range is approximated by 10 to 60 (actually it is 12 to
58) and is divided into intervals of 5 units. For each in-
terval, 11 to 15, 16 to 20, and so on, the height of the
bar represents the number of data points that lie
within that interval. So there are four IBI data points
that lie within 31 to 35 and eight within 21 to 25.
Thus, the bar for the 21 to 25 interval is twice the
height of the 31 to 35 bar.

What does the histogram tell us about this
stream? Basically, it provides us with a visual image of
the distribution of the sample. In specific terms, it
means that we can quickly see such things as the loca-
tion of the center of the sample, amount of dispersion,
extent of symmetry, and the existence of outliers in
the sample. Outliers need not be errors or aberrations;
they are simply “set apart” from the bulk of the obser-
vations. The reasons why they are set apart may be of
particular interest in some studies.

In Figure A.1, the center may be visually associ-
ated with the highest bar (mode) at 21 to 25, or it may
be identified as a middle value (median) around 30.
Dispersion could perhaps be characterized by stating
that the range is 12 to 58, and almost 60 percent (actu-
ally 15 to 26) of the data points lie between 20 and 35.
The histogram is not symmetric, however, and one
might want to check on the validity of the two outly-
ing observations on the extreme right.

The picture created by the histogram is of con-
siderable value in the selection of descriptive statis-
tics. Some care should be observed in the
construction of the histogram, however. With
changes in interval size, the histogram can assume
different shapes that may affect the inferences. For ex-
ample, the IBI data in Figure A.2 are plotted using an
interval size of 10 units. On that scale, the two highest
data points no longer appear as outliers. In contrast,
the two-unit intervals in Figure A.3 give the impres-
sion of possible outliers on both the right and left ex-
tremes of center. It is probably good practice to scale
the histogram so that the observations are neither too
aggregated (as in Figure A.2) nor too spread out to per-
mit reasonable inferences to be drawn.

Thus, the histogram provides an impression of
the extent of symmetry in the sample. Symmetry ina
data set is a desirable attribute for two reasons. First, it
often means that one can characterize the sample as
having a distribution with a shape similar to one of
the symmetric distributions (e.g., the normal distri-
bution), which is often assumed to be an underlying
model in statistical inference. Stating, for example,
that a sample approximates the normal distribution
conveys useful information. Beyond that, symmetry
implies that common descriptive statistics are clear:
central tendency refers to the center of symmetry, and
dispersion characterizes variability without skew.

Therefore, it may be useful to apply a transfor-
mation, if necessary, to create symmetry in an asym-
metric data set. Continuous concentration and
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is plotted. Comparison of this histo-
gram with a normal density function
provides a rough indication of
lognormality; formal tests also exist
(e.g., the Kolmogorov-Smirnov test).
These tests can be found in many in-
troductory statistics books.

To illustrate how a transforma-
tion can change the shape of a histo-
gram, the IBI data from Table A.1
were log-transformed, and histo-
grams of the log IBI are presented in
Figures A.4 and A.5.

Compare Figure A.2 with Fig-
ure A.4; in the first figure, the distri-
bution of IBI appears skewed-right,
whereas in the second figure, the
distribution of log IBI is skewed left.
Figure A.5 appears approximately
symmetric and normal, which sug-
gests that the logarithmic transfor-
mation may be a good idea if these

Frequency

attributes are desired. Note that the
data points at the extreme right in
the original IBI metric no longer ap-
pear to be outliers in the log-metric.
This result is the effect of the loga-
rithmic transformation — it has
spread out the low values and
squeezed in high values. Having
studied the histograms of this data
set, we can now determine which
statistics are most appropriate for
our data summary.

Stem and Leaf Displays

An alternative and often informative

Figure A.3.—Histogram of IBI data with two-unit intervals.

density data often yield a skewed-right histogram,
since all values are positive and a few relatively high
values frequently occur. This description character-
izes the lognormal distribution, which is often used to
describe biological data sets. To check for
lognormality, the logarithmic transformation is ap-
plied to data, and a histogram of the transformed data

version of the histogram is the stem
and leaf display. Developed by
Tukey (1977), the stem and leaf plot
provides the shape of a histogram
and the data’s numeric values simul-
taneously. For example, the stem and
leaf display for the IBI data set in Ta-
ble A.1 is presented in Figure A.6.
Note that its shape is nearly the same
as thehistogram in Figure = A.1.

To construct the stem and leaf diagram, first
choose the stems digit and the interval width. In Fig-
ure A.6, the stem is assigned to the tens digit, and the
interval width is one-half of 10, or five. The values for
the stem are placed to the left of a vertical line. Each
stem digit is repeated in Figure A.6 because the inter-
val width is five units. Thus the first tens stem covers
0-4 and the next covers 5-9. On the right side of this
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Figure A.4.—Histogram for log(IBI).
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Figure A.5.—Histogram for log(IBI): Alternative scale.

ing IBI from 10 to 14). The IBI of 16
results in a 6 (the units digit) placed
in the row for the second tens stem
(covering IBI from 15 to 19), and so
on.

The primary advantage of the
stem and leaf display (over the histo-
gram) is that it contains information
on the numeric values in the data set
(and still provides information on
the shape of the sample distribu-
tion). There may be advantages to
this combination, particularly when
the data are displayed for presenta-
tion purposes. Tukey (1977) de-
scribes several variations of the stem
and leaf display, including an inter-
esting way to look at covariation in
bivariate data.

Box and Whisker Plots

Investigators often need to compare
two or more samples of the same
characteristic (e.g., samples of the
IBI for the same waterbody for two or
more years). This comparison may
be purely statistical, perhaps using
hypothesis testing. Alternatively, a
graphic method could be used —

224

56
2334444
5678

34

5568

12

line, the “leaves” are written. For each data point, the
leaf is the next digit lower in value than the stems
digit. Since the stems in Figure A.6 are composed of
the tens digit, the leaves are made up of the units dig-
its. Each observation contributes one leaf to the row
containing its stem. For the IBI data points in Table
A1, the first observation (12) results in a 2 (the units
digit) placed in the row for the first tens stem (cover-

o O o H WO O N N = =

68

Figure A.6—Stem and leaf display.
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Figure A.7 shows the basic struc-

ture of the box plot. For clarification,

B e icance at Maximum Value note that the “statistical significance of

75% Value ' the median” on Figure A.7 refers to the

degree of vertical overlap of the notch or

indention in one box with the notch in

T another box. If the notches do not over-

lap vertically, then the medians may be

considered significantly different at ap-
proximately the 0.05 level.

- Median Value

- 25% Value

Box plots are based on order statis-
tics which, like the median, are calcu-
lated by ranking the observations from
lowest to highest. Box plots can be used
to convey information on the sample
median; dispersion, as conveyed by the
range and the interquartile range; skew,
as conveyed by the symmetry in the
shape above and below the median; rel-
ative size of the data set, as conveyed by
the width of the box; and statistical sig-
nificance of the median.

Concentration
Interquartile Range

Minimum Value

Figure A.8 shows three sample box
Figure A.7.—Box and whisker plots. plots for stream IBI data for 1979, 1989,
and 1990. The box and whisker plots in
Figure A.8 provide a substantial
amount of information on IBI during
the years of sampling. First, it is appar-
ent that IBI has increased since 1979, as
35 there is little vertical overlap of the
1979 box plot with the other two. This
30 conclusion is further supported by the
lack of vertical overlap in the 1979
25 notch with the other two notches. In
: contrast, while the medians for 1989
20 and 1990 differ, they are not signifi-
H cantly different (0.05 level) and the
Z S , samples (boxes) overlap considerably.
15 None of the years exhibit substantial
skew in the sample data. The 1989 data
1979 1989 1990 are skewed the most, based on the rela-
Year tive symmetry of the box and whiskers

around the median.

40

Stream IBI

Box plots are helpful as diagnostic
tools and as a method of demonstrating
Figure A.8.—Stream IBI box plots. conclusions about samples following

’ the completion of a statistical study.
Tukey (1977) and Reckhow (1979) de-
scribe several interesting applications.

erhaps one that provides both pictorial and statistical Bivariate Scatter Plots
comparison. One such model is the box and whisker
plot, which is available in many statistical software
packages for the microcomputer.

Many statistics (e.g., correlation coefficients)
and many statistical methods (e.g., regression analy-
sis) are fundamentally concerned with relationships
between pairs of variables. Without doubt, the best
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A second topic of interest for

bivariate samples is the presence
or absence of outliers. Outliers
have no universally accepted ob-
jective definition; rather, the term
is used here to identify observa-
tions that stand apart from a clus-
ter of points. We are concerned
about outliers because they are apt
to have excessive influence on
nonresistant statistics like the
mean, variance, sample correla-
tion coefficient, and OLS regres-
sion coefficients. Bivariate plots
are valuable for outlier identifica-
tion and may suggest approaches
(e.g., transformation) for correc-

Figure A.9.—IBI bivariate plot for 1989 and 1990 data.

way to examine a relationship between pairs of vari-
ables (a bivariate relationship) is through a scatter
plot.

In Figure A.9, a bivariate scatter plot is presented
for the 1989 and 1990 IBI data for a particular stream.
From the plot, we can examine the distribution of data
for each variable separately and for the two variables
together. For example, we can see from Figure A.9 that
two relatively high observations tend to stand apart
from the rest of the data, particularly in the horizontal
direction. As might be expected, there is an approxi-
mately linear correlation between the IBI estimates
for successive years.

Two characteristics of a bivariate sample are of-
ten of interest in statistical studies. First, the biologist
may be interested in the pattern or shape (e.g., linear-
ity or nonlinearity) of a relationship. Linear relation-
ships are often desirable for ease of analysis;
correlation analysis and ordinary least squares (OLS)
regression provide measures of the strength of a Iinear
relationship. If the bivariate relationship is nonlinear,
it is possible that a transformation can be applied to
make it linear, or a nonlinear model may be used.
Without question, the scatter plot is the most impor-
tant diagnostic device for evaluating linearity, and it
is often quite helpful in selecting a transformation.

42
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tion. In Figure A.9, the two highest
values probably would not be con-
sidered outliers, since they are
compatible with the pattern exhib-
ited in the rest of the data and not
substantially separated from those
data.
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